

KREI PLA REVOLUTION CARBON HF

O KREI PLA REVOLUTION CARBON HF é um biopolimero de ácido polilático desenvolvido especialmente para impressão 3D. Recebe enxertos de carbono durante sua síntese, tornando o mais leve e aprimorando ainda mais sua resistência mecânica e térmica. É ideal para quem deseja impressões decorativas e funcionais, devido a sua resistência mecânica aprimorada e excelente qualidade superficial, estabilidade dimensional, leveza e facilidade de impressão. Este filamento pode ser utilizado para impressão de peças à prova d'água e estanques. Pode ser utilizado em qualquer impressora que opere com temperaturas entre 180°C - 300°C.

DIFERENCIAIS DO KREI PLA REVOLUTION CARBON HF:

- Combinação de propriedades mecânicas (tração, flexão e impacto) superior vs. PLA, PLA REVOLUTION HF, ABS, ASA e PETG;
- · Resistência térmica superior vs. PLA e PLA REVOLUTION HF;
- Alta resistência a raios U.V;
- Baixa absorção de umidade;
- · Baixa cristalinidade, resultando em baixo encolhimento;
- · Não emite vapores tóxicos durante processamento (sem odor);
- · Livre de cloro e metais pesados em sua formulação;
- Pode ser impresso em altas velocidades;
- · Não necessita de câmara fechada para impressão;
- Excelente adesão entre camadas, possibilitando que as peças sejam lixadas, furadas e usinadas sem descamação;
- Excelente adesão à mesa de impressão, não necessitando do uso de adesivos/colas;
- · Livre de empenamento durante o processo de impressão;
- · Possui tecnologia capaz de esconder as linhas de impressão;
- Pode entrar em contato com alimentos;
- Ampla faixa de temperatura de processamento: 200 300°C.

Mesmo se tratando de um material pouco higroscópico, caso seja necessário, o mesmo pode ser seco a 45°C por 4 horas para remoção total de moléculas de água.

IDENTIFICAÇÃO		
Nome comercial	KREI PLA REVOLUTION CARBON HF	
Nome químico	Ácido Polilático com enxertos de carbono	
Aplicação	Impressão 3D FDM	
Diâmetro (mm)	1,75±0,05	
Fabricante	SPALC INDUSTRIAL	

PROPRIEDADES MECÂNICAS	KREI PLA REVOLUTION CARBON HF	
Gravidade específica (g/cm³)	≈ 1,18	
Temperatura de amolecimento (°C)	≈ 67	
Resistência a tração (MPa)	≈ 55	
Elongação até ruptura (%)	≈ 15	
Restência ao impacto IZOD (entalhado kJ/m²)	≈ 18	
Resistência a flexão (MPa)	≈58	
Dureza (shore D)	≈ 68	

PARÂMETROS PARA IMPRESSÃO FFF DO KREI PLA REVOLUTION CARBON HF			
PARÂMETRO	COMUM	RANGE	
Temperatura do cabeçote (°C)	230	200 a 300	
Temperatura do leito (°C)	60	0 a 70	
Velocidade de impressão (mm/s)	300	20 a 600	
Diâmetro do bico de impressão (mm)	≥ 0,1		
Altura de camada recomendada (mm)	≥ 0,01		
Velocidade de impressão da primeira camada (mm/s)	20	20 a 60	
Velocidade da ventoinha na primeira camada (%)	0	0 a 100	
Velocidade da ventoinha na peça (%)	100	0 a 100	

- Os valores supracitados podem variar de acordo com a metodologia de análise empregada;
- Os parâmetros descritos acima podem sofrer variações de acordo com o modelo da impressora a ser utilizada e condições de fatiamento;
- Recomenda-se o uso de isolante térmico do cabeçote de aquecimento (heat block).

